Toxicity of fluoxetine hydrochloride on some selected vital organs of pregnant mice *Mus musculus*

B.A. Mohammed¹ and S.S. Al-Mahmood²

¹Department of Biology, College of Education for Pure Science, ²Department of Pathology and Poultry Diseases, College of Veterinary Medicine, University of Mosul, Mosul, Iraq

Abstract

The current study intends to look at the impact of the fluoxetine hydrochloride on specific tissues lung and pancreas of mature pregnant mice. The two doses used during the study were 45,75 mg/kg b.w. from the 7th to the 17th day of pregnancy. Experimental animals received fluoxetine orally at a dosage of 45mg/kg b.w. The findings indicate variable pathologic changes in the lungs. At the dose of 75 mg/kg b.w. hyperplasia of pneumocytes occurred. There were no detectible lesions in the pancreas at the dose of 45mg/kg b.w. While at the dose of 75 mg/kg b.w. the severity of tissue lesions was seen. In conclusion, antidepressants may stimulate oxidative injury throughout the body's internal organs, particularly if taken at high doses during pregnancy. Consequently, these lesions significantly impact the health of both fetus and pregnant mice since the most common lesions were observed in the fetus, which causes abortion, which affects the health of pregnant mice.

Keywords: Fluoxetine, Mice, Histopathology, Pregnancy, Lung

Introduction

Recently, the abuse of antidepressants such as fluoxetine has been a significant problem worldwide (1). Those drugs are often used in depression treatment. They may help depressed people to recover from their sickness, especially pregnant women who suffer from depression and emotional changes during pregnancy and after childbirth (2). One of the newest antidepressant drugs is Fluoxetine Hydrochloride (3). The drug's chemical formula is C₁₇H₁₈F₃NO, and the scientific name of the drug is N-methyle-3-phenyle1-1-3 (4-trifluoromethyl) phenoxylpropan-1-amine (4). Fluoxetine metabolism is done in the liver, and the drug is metabolized into norfluoxetine. Norfluoxetine is the drug's active metabolite, directly linked to medical and toxicological effects. The drug's active metabolite is directly related to medical and toxicological impact (5). About 80% of the drug is excreted with urine, and 57% with faeces (6). Moreover, the drug has a maternal effect. The severity of the impact depends on the dose and duration of exposure (7). Medical reports showed that the drug causes pulmonary hypertension syndrome in babies (8). Fluoxetine administration throughout gestation may cause a slow formation of the lungs (9). The drug caused an increase in mortality and altered the structure of phospholipids, hepatic changes when given to rats at a dosage of 10.50 mg/kg b.w. (10). The drug induces oxidative stress, which causes testicular damage, a significant decrease in the weight of reproductive organs, and affects the level of testosterone in the mice (11). Drug administration also causes injuries in the body's vital organs (12). Several studies referred to the drug's effect on carbohydrate metabolism and the function of beta cells (13).

The objective of this research project was to assess the impact of fluoxetine administration on the concentrations of 45.75 mg /kg of b.w. along with the maternal lung and pancreas of pregnant mice *Mus musculus* to evaluate the harmful effect of the drug on them.
Materials and methods

In our investigation, twenty-one pregnant mice, aged three months, weighted 29 ± 3 gm, were used. Animals were taken from the College of Veterinary Medicine's animal house, Mosul University, Mosul, Iraq, and housed in the animals' house of the Biology Department, College of Education for Pure Science. Animals were caged in plastic cages, supported with free access to food and water, fed with a standard diet; the room temperature was 25ºC, the animals were exposed to a regular light-dark cycle (14). The drug used in the study is fluoxetine 20 mg capsules produced by Bristol Laboratories Ltd., Bristol house, Unite 3, Canalside, Northbridge Road, United Kingdom. For the mating process, two females for one male were placed together in the same cage overnight. The next morning females with vaginal plugs were isolated in separate cages and kept together until the 7th day of pregnancy. Animals’ housing was done following the standard guidelines for the use and care of experimental animals.

The pregnant mice (n=21) were divided into three groups (each group consisted of 7 pregnant mice). Group I (control group): The pregnant mice (n=7) were administered with 0.2ml of distilled water orally from the day 7th until the 17th of pregnancy. Group II: The pregnant mice (n=7) were administered orally with 45mg/kg b.w. of fluoxetine drug from the 7th day until the 17th day of pregnancy. Group III: in this group, the pregnant mice (n=7) were administered 75 mg/kg b.w. of fluoxetine drug from day 7th until day 17th of pregnancy.

Doses preparation

The drug solution was prepared by dissolving each concentration in 5 ml of distilled water (stock solution). The doses rates were between 0.13 - 0.15 ml, depending on the weight of pregnant mice. Those doses had been chosen depending on the LD50 of the drug, which is 100 mg/kg b.w. (15). The doses (drug solution) were prepared freshly every day during the experiments period.

Histopathological preparation

On the day 17th of pregnancy, all pregnant mice were sacrificed and dissected, maternal lung and pancreas were dissected. Specimens were fixed in formalin 10% for 48 hours; later, they were washed with distilled water for two hours and processed with routine paraffin embedding technique (16). Sections were stained with hematoxylin and eosin (17).

Results

Lung histopathology in adult pregnant mice

Light microscope examination of the control lung section of the pregnant mice Mus musculus showed normal appearance of lung histology (Figure 1). Lung sections collected from pregnant mice performed 45 mg/kg b.w. of fluoxetine from the 7th until the 17th day of pregnancy showed satisfactory histopathological lesions represented with serofibrinous oedema in the air space of alveoli and infiltration of inflammatory cells as well as enlarged airspace and mild thickening of alveolar septa (Figure 2) as well as degeneration of the pulmonary lining epithelium cells and congestion (Figure 3). While the examination of the lung sections obtained from pregnant mice given 75 mg/kg b.w. of fluoxetine drug orally for the same period above showed that previous lesions were increased, especially the congestion of blood vessel (Figure 4), as well as hyperplasia of the lung epithelium tissue, was observed (Figure 5).

Figure 1: A cross-section photomicrograph of the control pregnant mouse Mus musculus lung showing normal lung histology. (10x. H&E).

Figure 2: A cross-section photomicrograph of the lung of pregnant mouse Mus musculus treated with fluoxetine drug at the dose of 45 mg/kg of b.w. from the 7th day until 17th day of pregnancy showing serofibrinous oedema (1), enlargement of pulmonary air space (black arrow), mild thickening of alveolar septa (2), infiltration of inflammatory cells (3). (400x. H&E).
Histopathological observations of the pancreas of pregnant mice

Light microscope examination of the control pancreas of pregnant mice Mus musculus showed normal lobules and normal pancreatic cells (Figure 6). Pancreas sections were obtained from pregnant mice given 45mg/kg b.w. of fluoxetine drug orally from the 7th until the 17th day of pregnancy. The histological changes and the dose increase were increased, so sections of the pancreas obtained from the pregnant mice given 75mg/kg b.w. of fluoxetine drug orally for the same period above revealed vacuolation of the pancreatic cells (Figure 7). Hypertrophy of some of them, congestion of the blood vessel, and the increase of eosinophilia of some pancreatic cells cytoplasm (Figure 8).
due to the, that using fluoxetine for depression treatment during pregnancy may involve inducing cytotoxic mechanism in the body cells, which in turn increase the production of free radical oxygen species that destroy cellular mitochondria, proteins, lipids, and nucleic acids (25).

Conclusion

In conclusion, antidepressants may stimulate oxidative injury throughout the body's internal organs, particularly if taken at high doses during pregnancy. Consequently, they should always be used caution to avoid adversely.

Acknowledgements

The authors would thank the University of Mosul to support the current study.

Conflict of interest

No conflict of interest.

References

"أثر مزمن فلوكستين على بعض الأعضاء الحيوية المختارة في الفئران الحوامل"

"Mus musculus"

"بداء عمال العنزي محمد وأيفان سعد المحمود"

"أثر مزمن فلوكستين على بعض الأعضاء الحيوية المختارة في الفئران الحوامل"