Major-surface-protein-4-gene-based detection of *Anaplasma marginale* isolated from sheep in Al-Diwaniyah province, Iraq

S.F. Klaif¹, A. Jassim², M.A. Alfatlawi³ and M.J. Ali³

¹Unit of Zoonotic Disease Research, Department of Internal Medicine, ²Department of Veterinary Microbiology, ³Department of Veterinary Microbiology, College of Veterinary Medicine, University of Al-Qadisiyah, Al-Diwaniyah, Iraq

Article information

Article history:
Received December 26, 2020
Accepted March 21, 2021
Available online November 8, 2021

Keywords:
Anaplasma marginale
Major surface protein
Al-Diwaniyah
Iraq

Correspondence:
M.A. Alfatlawi
monyerr.abe@qu.edu.iq

DOI: 10.33899/ijvs.2021.129230.1635, ©Authors, 2022, College of Veterinary Medicine, University of Mosul.
This is an open access article under the CC BY 4.0 license (http://creativecommons.org/licenses/by/4.0/).

Introduction

Anaplasmosis infection is one of the major disease conditions that affect ruminants in the world, and *Anaplasma marginale* is appreciated to be one of the biological-infectious agents that affect health of animals plus increase economic crisis in the affected areas (1,2). This tick-borne disease is responsible of high mortality rates in the infected animals (3-7). With an incubation period that could reach up to 60 days, signs of severe anemia in the affected animals are manifested due to engulfing of the *Anaplasma*-infected erythrocytes in the reticuloendothelial system (8). The disease is characterized by the appearance of fever, paleness, anorexia, lethargy, and icterus (9,10). At the level of tissue changes, anaplasmosis induces several alterations such as hepatic and splenic degeneration as a result to anemia and decreased levels of oxygen plus deposition of high amounts of the destructed-erythrocyte-based pigments in the spleen (10). In Iraq, anaplasmosis causes a great impact on the herds and livestock, and using ordinary-diagnostic techniques, such as blood visualization using microscopes, generates low-quality identification of the tested cases (11-13). The disease treatment and control are challenging and required long and frequent testing of the suspected animals using specific and new tools. Here, PCR was used to identify these infections and recognize the main infectious *Anaplasma* spp that affects sheep in Al-Diwaniyah, Iraq.

Materials and methods

This study was purposed for confirming detection and typing of *Anaplasma* spp in infected sheep from Al-Diwaniyah province, Iraq. Sampling of 50 blood specimens was performed from clinically-identified infection of anaplasmosis. The samples of the blood were subjected to DNA extraction followed by polymerase-chain-reaction (PCR)-based detection of the *Anaplasma marginale* using major surface protein (MSP4) gene. The results have shown that 8 blood samples were infected with A. marginale. The PCR-based identification has revealed a confirmative identification of the *Anaplasma marginale* in the infected sheep. The study identifies *Anaplasma marginale* as a member of infectious agents that affect sheep in the study city.
based detection of the *Anaplasma marginale* using major surface protein (MSP4) gene.

DNA extraction

To complete the detection process, the 50-blood samples were exposed to commercial-kit-based extraction of the genomic DNA using Genomic DNA Mini Kit® (Geneaid, China). The manufacturer’s information provided with kit was followed to complete this step. Frozen-blood and proteinase-K type of extraction was performed. The DNA resulted from this process was subjected to NanoDrop spectrophotometer to estimate it quality and quantity. Then, DNA was kept stored at -20°C to follow up with the next steps.

Polymerase chain reaction

Relying on specific primers which designed by authors by using Gene bank data base, F: ACGAAGTTGCTTCGAGGG and R: AGCTAATCCCCACCTTGCCC, PCR was assigned to amplify a highly-conserved sequence of nucleotides, 567bp, in the MSP4 gene that belongs to *A. marginale*. Bioneer Company, South Korea was ordered to purchase these primers. The mastermix reaction recipe was followed utilizing AccuPower® PCR PreMix kit (Bioneer Comp. South Korea). DNA polymerase 1U, dNTPs 250 µM, Tris-HCl (pH 9.0) 10 mM, KCl 30 mM, MgCl2 1.5 mM, stabilizer, and tracking dye were already provided in the mastermix tubes. The information accompanied with kit was used to initiate the process of preparing this reaction recipe. After that, adding one by one of 5µl DNA, 1.5µl of 10 pmole of each primer, and 12 µl PCR water was completed. Brief vortexing and centrifugation followed the addition of these components. Then, a thermocycler (Eppendorff Company, Germany) was used to generate the processes of the PCR reaction. The conditions of the thermocycler used in this step were initial denaturation temperature of 95°C for 5 min, 30 cycles of the denaturation 95°C for 1 minute, annealing 58°C for 1m, and extension 72°C for 1m, and final extension at 72°C for 10 min. Electrophoresis via the use of ethidium bromide, and proteinase (Geneaid, China). The manufacturer’s information provided with kit was followed to complete this step. DNA resulted from this process was subjected to NanoDrop spectrophotometer to estimate it quality and quantity. Then, DNA was kept stored at -20°C to follow up with the next steps.

PCR results

The results have shown that 8 out of 50 blood samples were infected with *A. marginale*. The PCR-based identification has revealed a confirmative identification of the *Anaplasma marginale* in the infected sheep. The amplification of the 567-bp piece of the MSP4 gene that belongs to *A. marginale* was successfully generated (Figure 1).

![Image of the electrophoresis of Anaplasma marginale that demonstrates the PCR product amplification of 567-bp piece that belongs to the MSP4 gene. Lane M is the ladder, 100bp. Lane 1 to 8 are the positive amplified products.](image)

Discussion

The ticks which transmit a wide range of veterinary important pathogens, are hyperendemic in the middle and south of Iraq (14). In Iraq, Recent studies of *A. ovis* and *A. marginale* in Al-Qadisiyah province, Al-Nasiriyah city and Duhok province were detected in significant infection rate in cattle, sheep and goat respectively (15-17). The most clinical signs which observed by clinical examination on infected sheep were agreed with Ayyz et al. (15). Microscopic examination it’s insufficient to detect the low level of *Anaplasma* infection (18-20), so that molecular methods used for detecting the undetected cases of infected animals (21,22). Using of the PCR technique for more specific and sensitive detecting of minimum level of *Anaplasma* in infected animals (23-26).

The results of the PCR technique have confirmed that 8 sheep were infected with *A. marginale*. The rest of the 42 sheep might have been infected with different infectious agents. However, the results indicate that the sheep in the sampled city are suffered from the infection of this species of *Anaplasma* spp. Moreover, these results also confirm the PCR reliability to identify *A. marginale* from clinical samples, were Gale et al. (27) who compared the results of PCR and ELISA techniques and found that the efficiency rate was 92%. The current results agree with Renneker et al. (10) who found that the infection rate of *A. ovis* in sheep of the northern areas of Iraq was 62.6%. In another study that uses PCR, Soosaraeia et al. (28) and Yousefi et al. (18) found that sheep and sheep and goat were infected with *A.
marginal and A. ovis respectively in Iran, and Ghaffar et al. (29) found A. marginal in small ruminants in Pakistan, and this agrees with the current study results. The current study results also agree with Ayyz et al. (15), Al-Kassar et al. (16) and Naqied et al. (17) who detected infection of this infectious agent in sheep, goat and cattle in Al-Qadisiyah province, Al-Nasiriyah city, Duhok province, Iraq. The study identifies A. marginal as a member of infectious agents that affect sheep in the study province.

Conclusion

To investigate the spp. of Anaplasma in sheep in Al-Diwaniyah province, Iraq. We collect 50 blood samples for Molecular identification of Anaplasma marginal between sheep. The results have shown that 8 blood samples were infected with A. marginal. The PCR-based identification has revealed a confirmative identification of the Anaplasma marginal in the infected sheep.

Acknowledgments

The authors thank Professor Jabbar A. Alssady Dean of College of Veterinary Medicine, University of Al-Qadisiyah, Iraq, for technical assistance.

Conflict of interests

The authors have not received any funding or benefits from industry, agency of financing, or elsewhere to conduct this study.

References

الخلاصة
إن الغرض من هذه الدراسة هو تحديد أنواع الأنبلازما في الأغنام المصابة في محافظة الديوانية، العراق. تم جمع 50 عينة دم من أغنام تم تشخيص إصابتها سريرياً بالإبلازموس. عرضت هذه العينات لاستخلاص الحمض النووي منقوص الاوكسجين متبعاً بإجراء تفاعل البلمرة السلسلة المتصل للنبلازما مارجنالي وتأكيد التحديد النهائي باستخدام جين البروتين السطحي الكبير (ام اس بي) . أظهرت النتائج أن ثمانية عينات كانت مصابة بإبلازما مارجنالي. أظهرت نتائج التحديد المعتمد على تأكيد التفاعل السلسلة المتصل للنبلازما مارجنالي في الأغنام المصابة. الدراسة تحدد إبلازما مارجنالي كعضو من العوامل الخمجية التي تؤثر على الأغنام في المدينة المدروسة.

First report of Anaplasma marginale infection in goats, Brazil. PLOS One. 2018;13(8):1-6. 10.1371/journal.pone.0202140

