College of Veterinary Medicine / University of Mosul
  • Register
  • Login
  • العربیة

Iraqi Journal of Veterinary Sciences

Notice

As part of Open Journals’ initiatives, we create website for scholarly open access journals. If you are responsible for this journal and would like to know more about how to use the editorial system, please visit our website at https://ejournalplus.com or
send us an email to info@ejournalplus.com

We will contact you soon

  1. Home
  2. Volume 34, Issue 2
  3. Authors

Current Issue

By Issue

By Subject

Keyword Index

Author Index

Indexing Databases XML

About Journal

Aims and Scope

Editorial Board

Editorial Staff

Facts and Figures

Publication Ethics

Indexing and Abstracting

Related Links

FAQ

Peer Review Process

News

Histological evaluation of the possible role of Na+/ H+ entiporter and anion exchanger in endochondral ossification activities of secondary bone healing in rats

    Sahar Mohammed Ibrahim Thana’a M Ibrahim Kareem Obayes Handool Abubakar Adamu Abdul jalila abu Sabri Mohd Yusof Mehdi Ibrahimmi Loqman Yusof

Iraqi Journal of Veterinary Sciences, 2020, Volume 34, Issue 2, Pages 233-240
10.33899/ijvs.2019.125832.1165

  • Show Article
  • References
  • Download
  • Cite
  • Statistics
  • Share

Abstract

In secondary fracture healing, callus proliferate, undergo hypertrophy and the extracellular matrix becomes calcified. This step to some extent, recapitulates the embryological bone development with a combination of cellular proliferation and differentiation, increasing cellular volume and matrix deposition. The causes of the chondrocytes volume increase in secondary bone healing are poorly known, but cell membrane transporters perhaps could be implicated. We hypothesize that NHE-1 and AE-2 are among plasma membrane transporters that have a role in cellular differentiation and regulation of endochondral ossification for secondary bone fracture healing. Study of closed tibia fracture healing in 2 groups of 25 of 8-weeks-old Sprague-Dawley rats were undertaken and histological evaluation were made at 5 different time points at 1, 2, 3, 4, and 6 weeks after induction of the fracture. Histological evaluation of proliferative and hypertrophic chondrocyte zone area showed a significant difference in week 1 compared to other weeks. Immunohistochemistry study revealed a significant high level of labeling intensity of NHE-1 at the first four weeks. While labeling intensity of AE-2 showed moderate reaction at 1 and 2 weeks, that increased and reached the highest level at 3 and 4 weeks. These results suggested that NHE-1 and AE-2 had role in the endochondral ossification of secondary bone healing.
Keywords:
    Histology NHE-1 AE-2 Secondary bone healing
Main Subjects:
  • General Surgery
  • PDF (753 K)
  • XML
(2020). Histological evaluation of the possible role of Na+/ H+ entiporter and anion exchanger in endochondral ossification activities of secondary bone healing in rats. Iraqi Journal of Veterinary Sciences, 34(2), 233-240. doi: 10.33899/ijvs.2019.125832.1165
Sahar Mohammed Ibrahim; Thana’a M Ibrahim; Kareem Obayes Handool; Abubakar Adamu Abdul; jalila abu; Sabri Mohd Yusof; Mehdi Ibrahimmi; Loqman Yusof. "Histological evaluation of the possible role of Na+/ H+ entiporter and anion exchanger in endochondral ossification activities of secondary bone healing in rats". Iraqi Journal of Veterinary Sciences, 34, 2, 2020, 233-240. doi: 10.33899/ijvs.2019.125832.1165
(2020). 'Histological evaluation of the possible role of Na+/ H+ entiporter and anion exchanger in endochondral ossification activities of secondary bone healing in rats', Iraqi Journal of Veterinary Sciences, 34(2), pp. 233-240. doi: 10.33899/ijvs.2019.125832.1165
Histological evaluation of the possible role of Na+/ H+ entiporter and anion exchanger in endochondral ossification activities of secondary bone healing in rats. Iraqi Journal of Veterinary Sciences, 2020; 34(2): 233-240. doi: 10.33899/ijvs.2019.125832.1165
  • RIS
  • EndNote
  • BibTeX
  • APA
  • MLA
  • Harvard
  • Vancouver

  1. Fayaz HC, Giannoudis PV, Vrahas MS, Moran C, Pape HC, Krettek C, Jupiter JB. The role of stem cells in fracture healing and nonunion. Int J Orthop. 2011;35(11):1587-1597. doi: 10.1007/s00264-011-1338-z
  2. Shapiro F. Bone development and its relation to fracture repair. The role of mesenchymal osteoblasts and surface osteoblasts. Eur Cell Mater. 2008;15:53-76. doi: 10.22203/eCM.v015a05
  3. Kim HJ, Liu X, Wang J, Chen X, Zhang H, Kim SH, Cui J, Li R, Zhang W, Kong Y, Zhang J, Shui W, Lamplot J, Rogers MR, Zhao C, Wang N, Rajan P, Tomal J, Statz J, Wu N, Luu HH, Haydon RC, He T. Wnt signaling in bone formation and its therapeutic potential for bone diseases. Ther Adv Musculoskel Dis. 2013;5(1):13-31. doi: 10.1177/1759720X12466608
  4. Sathyendra V, Darowish M. Basic science of bone healing. Hand clinics. 2013;29(4):473-81. doi: 10.1016/j.hcl.2013.08.002
  5. Bush PG, Pritchard M, Loqman MY, Damron TA, Hall AC. A key role for membrane transporter NKCC1 in mediating chondrocyte volume increase in the mammalian growth plate. J. Bone Miner. Res. 2010; 25(7):1594-603. doi: 10.1002/jbmr.47
  6. Loqman MY, Bush PG, Farquharson C, Hall AC. Suppression of mammalian bone growth by membrane transport inhibitors. J Cell Biochem. 2013;114(3):658-68. doi: 10.1002/jcb.24408
  7. Hoffmann EK, Lambert IH, Pedersen SF. Physiology of cell volume regulation in vertebrates. Phys Rev. 2009;89:193-277. doi: 10.1152/physrev.00037.2007
  8. Gerstenfeld LC, Alkhiary YM, Krall EA, Nicholls FH, Stapleton SN, Fitch JL, Bauer M, Kayal R, Graves DT, Jepsen KJ, Einhorn TA. Three-dimensional reconstruction of fracture callus morphogenesis. J Histochem Cytochem. 2006; 54(11):1215-28. doi: 10.1369/jhc.6A6959.2006
  9. Hankenso KD, Zmmerman G, Marcucio R. Biological perspectives of delayed fracture healing. Injury. 2014;45(2):S8-S15. doi: 10.1016/j.injury.2014.04.003
  10. Marsell R, Einhorn TA. The biology of fracture healing. Injury. 2011;42(6):551-5. doi: 10.1016/j.injury.2011.03.031
  11. Gibson JS, McCartney D, Sumpter J, Fairfax TPA, Milner PI, Edwards HL, Wilkins RJ. Rapid effects of hypoxia on H+ homeostasis in articular chondrocytes. Pflugers Arch Eur J Physiol. 2009;458:1085-1092. doi: 0.1007/s00424-009-0695-6
  12. Tattersall AL, Wilkins RJ. Modulation of Na+/H+ exchange isoforms NHE1 and NHE3 by insulin-like growth factor-1 in isolated bovine articular chondrocytes. J Orthop Surg Res. 2008;26:1428-1433. doi: 10.1002/jor.20617
  13. Tattersall AL, Meredith D, Furla P, Shen MR, Ellory JC, Wilkins RJ. Molecular and functional identification of the Na+/H+ exchange isoforms NHE1 and NHE3 in isolated bovine articular chondrocytes. Cell Physiol Biochem. 2003;13(4):215-222. doi: 10.1159/000072424
  14. Hannan KM, Little PJ. Mechanisms regulating the vascular smooth muscle Na+/H+ exchanger (NHE-1) in diabetes. Revue Canadienne de Biochimie et Biologie. 1998;76(5):751-759. doi: 10.1139/o98-093
  15. Yu L, Hales CA. Silencing of sodium-hydrogen exchanger 1 attenuates the proliferation, hypertrophy, and migration of pulmonary artery smooth muscle cells via E2F1. Am J Respir Cell Mol Biol. 2011;45(5):923-930. doi: 10.1165/rcmb.2011-0032OC
  16. Fliegel L. Regulation of the Na+/H+ exchanger in the healthy and diseased myocardium. Expert Opin Ther Targets. 2009; 13(1):55-68. doi: 10.1517/14728220802600707
  17. McKelvay D, Hollingshead KW. Veterinary anesthesia and analgesia. 3rd ed. New York: Mosby; 2004. 315-349 p.
  18. Greiff J. A method for the production of an undisplaced reproducible tibial fracture in the rat. Injury. 1978;9(4):278-81. doi: 10.1016/S0020-1383(77)80044-2
  19. Otto TE, Patka PM, Haarman HJTM. Closed fracture healing: A rat model. Eur Surg Res. 1995;27(4):277-84. doi: 10.1159/000129410
  20. Fedchenko N, Reifenrath J. Different approaches for interpretation and reporting of immunohistochemistry analysis results in the bone tissue. Diagn Pathol. 2014;9(1):221. doi: 10.1186/s13000-014-0221-9
  21. Ramos J. Technical aspects of immunohistochemistry. Vet Pathol. 2005;42(4):405-426.
  22. Sfeir C, Ho L, Doll BA, Azari K, Hollinger JO. Bone regeneration and repair. In: Sfeir C, Ho L, Doll BA, Azari K, Hollinger JO. Fracture Repair. New Jersey: Humana Press; 2005. 21-44 p. doi: 10.1385/1-59259-863-3:021.
  23. Abed ER, Eesa MJ, Thanoon MG. Effects of platelets rich fibrin and bone marrow on the healing of distal radial fracture in local dogs: Comparative study. IJVS. 2019;33(2):419-25. doi: 10.33899/ijvs.2019.163169
  24. Amini S, Veilleux D, Villemure I. Three-dimensional in situ zonal morphology of viable growth plate chondrocytes: A confocal microscopy study. J Orthop Res. 2011;29(5):710-717. doi: 10.1002/jor.21294
  25. Marsh DR, Li G. The biology of fracture healing: Optimizing outcome. Br Med Bull. 1999;55(4):856-869. doi: 10.1258/0007142991902673
  26. Putney LK, Denker SP, Barber DL. The changing face of the Na+/H+ exchanger, NHE1: Structure, regulation, and cellular actions. Ann Rev Pharmacol. 2002;42:527-552. doi: 10.1146/annurev.pharmtox. 42.092001.143801
  27. Jansen ID, Mardones P, Lecanda F, de Vries TJ, Recalde S, Hoeben KA, Bronckers AL. AE-2a, b-Deficient mice exhibit osteopetrosis of long bones but not of calvaria. FASEB. 2009;23(10):3470-81. doi: 10.1096/fj.08-122598
  28. Masereel B, Pochet L, Laeckmann D. An overview of inhibitors of Na+/H+ exchanger. Eur J Med Chem. 2003;38(6):547-554. doi: 10.1016/S0223-5234(03)00100-4.
  29. Sagalovsky S. Bone remodeling: cellular-molecular biology and cytokine RANK- RANKL-Osteoprotegerin (OPG) system and growth factors. Crimean J Exp Clin Med. 2013;3(1-2):36-44. doi: 616-001.5:616.71-003.93.

  • Article View: 746
  • PDF Download: 936
  • LinkedIn
  • Twitter
  • Facebook
  • Google
  • Telegram
  • Home
  • Glossary
  • News
  • Aims and Scope
  • Privacy Policy
  • Sitemap

 

© 2023, College of Veterinary Medicine, University of Mosul

 
Powered by eJournalPlus