College of Veterinary Medicine / University of Mosul
  • Register
  • Login
  • العربیة

Iraqi Journal of Veterinary Sciences

Notice

As part of Open Journals’ initiatives, we create website for scholarly open access journals. If you are responsible for this journal and would like to know more about how to use the editorial system, please visit our website at https://ejournalplus.com or
send us an email to info@ejournalplus.com

We will contact you soon

  1. Home
  2. Volume 34, Issue 1
  3. Author

Current Issue

By Issue

By Subject

Keyword Index

Author Index

Indexing Databases XML

About Journal

Aims and Scope

Editorial Board

Editorial Staff

Facts and Figures

Publication Ethics

Indexing and Abstracting

Related Links

FAQ

Peer Review Process

News

Levels of disaccharidases in the brush border membrane of equine small intestine

    Miran A. Al-Rammahi

Iraqi Journal of Veterinary Sciences, 2020, Volume 34, Issue 1, Pages 197-201
10.33899/ijvs.2019.125778.1152

  • Show Article
  • References
  • Download
  • Cite
  • Statistics
  • Share

Abstract

The disaccharides, consisting of sucrose, lactose and maltose, are hydrolysed into monosaccharides (D-glucose, D-galactose and D-fructose) by intestinal brush border enzymes: sucrase, lactase and maltase. The aim of this study to investigate changes in the brush-border membrane carbohydrate digestive enzymes. From intestinal mucosal scrapings of equine, brush border membrane vesicles were isolated. The results showed that sucrase, maltase and lactase are present in the equine small intestine. The activity of all three enzymes is highest proximally (in the duodenum and jejunum) and lower in the ileum. There was considerable variation between individual horses, however the majority showed highest disaccharidase activity in the jejunum, with some showing highest activity in the duodenum. Sucrase activity is highest in the jejunum and duodenum and lower in the ileum. Maltase activity is similar in all three regions, but slightly higher in the jejunum. Lactase activity is low in all three regions of the small intestine, slightly higher in the equine jejunum and duodenum than ileum. From this study, we can conclude that the equine small intestine digests disaccharides by the brush-border associated disaccharidases sucrase, maltase and lactase. Levels of sucrase and lactase are comparable to other species, but maltase is much higher.
Keywords:
    Brush border membrane vesicle Sucrase Maltase Lactase Equine small intestine
Main Subjects:
  • Animal Physiology
  • PDF (270 K)
  • XML
(2020). Levels of disaccharidases in the brush border membrane of equine small intestine. Iraqi Journal of Veterinary Sciences, 34(1), 197-201. doi: 10.33899/ijvs.2019.125778.1152
Miran A. Al-Rammahi. "Levels of disaccharidases in the brush border membrane of equine small intestine". Iraqi Journal of Veterinary Sciences, 34, 1, 2020, 197-201. doi: 10.33899/ijvs.2019.125778.1152
(2020). 'Levels of disaccharidases in the brush border membrane of equine small intestine', Iraqi Journal of Veterinary Sciences, 34(1), pp. 197-201. doi: 10.33899/ijvs.2019.125778.1152
Levels of disaccharidases in the brush border membrane of equine small intestine. Iraqi Journal of Veterinary Sciences, 2020; 34(1): 197-201. doi: 10.33899/ijvs.2019.125778.1152
  • RIS
  • EndNote
  • BibTeX
  • APA
  • MLA
  • Harvard
  • Vancouver

  1. Daly K, Stewart C, Flint HJ, Shirazi-Beechey SP. Bacterial diversity within the equine large intestine as revealed by molecular analysis of cloned 16S rRNA genes. FEMS Micrbiol Ecol. 2001;38:141-151. doi.org/10.1111/j.1574-6941.2001.tb00892.x.
  2. Dyer J, Fernandez ME, Salmon KS, Proudman CJ, Edwards GB, Shirazi SP. Molecular characterisation of carbohydrate digestion and absorption in equine small intestine. Equine Vet J. 2002;34:349-358. DOI:10.2746/042516402776249209
  3. Dyer J, Al-Rammahi M, Waterfall L, Salmon KS, Geor RJ, Bouré L, Edwards GB, Proudman CJ, Shirazi-Beechey SP. Adaptive response of equine intestinal Na+/glucose co-transporter (SGLT1) to an increase in dietary soluble carbohydrate. Pflugers Arch. 2009;458(2):419-30. DOI 10.1007/s00424-008-0620-4.
  4. Batchelor DJ, Al-Rammahi M, Moran AW, Brand JG, Li X, Haskins M, German AJ, Shirazi-Beechey SP. Sodium/glucose cotransporter-1, sweet receptor, and disaccharidase expression in the intestine of the domestic dog and cat: two species of different dietary habit. Am J Physiol Regul Integr Comp Physiol. 2011;300(1):67-75. DOI:10.1152/ajpregu.00262.2010.
  5. Moran AW, Al-Rammahi MA, Arora DK, Batchelor DJ, Coulter EA, Ionescu C, Bravo D, Shirazi-Beechey SP. Expression of Na+/glucose co-transporter 1 (SGLT1) in the intestine of piglets weaned to different concentrations of dietary carbohydrate. Br J Nutr. 2010;104(5):647-55. DOI:10.1017/S0007114510000954
  6. Laurence C, Peter RK. Sugars, fatty acids, and energy biochemistry. New York: Blackwell; 2016. 17-30 p.
  7. Shirazi SP. Molecular biology of intestinal glucose transport. Nut Res Rev. 1995;8:27-41. doi: 10.1079/NRR19950005.
  8. Moran AW, Al-Rammahi MA, Batchelor DJ, Bravo DM, Shirazi-Beechey SP. Glucagon-like peptide-2 and the enteric nervous system are components of cell-cell communication pathway regulating intestinal Na+/glucose co-transport. Front Nutr. 2018;26(5):101. doi.org/10.3389/fnut.2018.00101
  9. Röder PV, Geillinger KE, Zietek TS, Thorens B, Koepsell H, Daniel H. The role of SGLT1 and GLUT2 in intestinal glucose transport and sensing. PLoS One. 2014;26;9(2):89977. DOI:10.1371/journal.pone. 0089977.
  10. Wright EM, Loo DD, Hirayama BA. Biology of human sodium glucose transporters. Physiol Rev. 2011;91(2):733-94. doi: 10.1152/physrev .00055.2009.
  11. Veronique D, Ronaldo PF. The role of fructose transporters in diseases linked to excessive fructose intake. J Physiol. 2013;591(2):401-414. doi.org/10.1177/2050640613505279.
  12. Al Rammahi MA. Isolate and characterise brush border membrane vesicles and basolateral membrane vesicles from equine small intestine. Inter J Adv Res. 2014;2(7):924-930.
  13. Shirazi SP, Davies AG, Tebbutt K, Dyer J, Ellis A, Taylor CJ, Fairclough P, Beechey RB. Preparation and properties of brush-border membrane vesicles from human small intestine. Gastroenterol. 1990;98:676-685. DOI:10.1016/0016-5085(90)90288-c
  14. Dahlqvist A. Assay of intestinal disaccharidases. Scand J Clin Lab Invest. 1984;44:169-172. doi.org/10.1016/0003-2697(68)90263-7
  15. Tarpey PS, Wood IS, Shirazi SP, Beechey RB. Amino acid sequence and the cellular location of the Na (+)-dependent D-glucose symporters (SGLT1) in the ovine enterocyte and the parotid acinar cell. Biochem J. 1995;15(312):293-300. doi: 10.1042/bj3120293.
  16. Hoffman RM, Wilson JA, Kronfeld DS, Cooper WL, Lawrence LA, Sklan D, Harris PA. Hydrolyzable carbohydrates in pasture, hay, and horse feeds: direct assay and seasonal variation. J Anim Sci. 2001;79:500-506. DOI:10.2527/2001.792500x.
  17. Buddington RK, Rashmir AM. Carbohydrate digestion by the horse: is there a limiting factor. Equine Vet J. 2002;34:326-327. DOI:10.2746/042516402776249100
  18. Shirazi SP. Molecular biology of intestinal glucose transport. Nutr Res Rev. 1995;8:27-34. doi: 10.1079/NRR19950005.
  19. Shirazi SP. Intestinal sodium-dependent D-glucose co-transporter: Dietary regulation. Proc Nutr Soc. 1996;55:167-178. doi.org/10.1079/PNS19960018
  20. Roberts MC, Hill FWG, Kidder DE. The development and distribution of small intestinal disaccharidases in the horse. Res Vet Sci. 1974;17:42-48. doi.org/10.1016/S0034-5288(18)33706-8
  21. Kienzle E, Radicke S, Landes E, Kleffken D, Illenseer M, Meyer H. Activity of amylase in gastrointestinal tract of horse. J Anim Physiol Anim Nutr. 1994;72:234-241. doi.org/10.1111/j.1439-0396.1994. tb00392.x
  22. Richards N, Choct M, Hinch GN, Rowe JB. Examination of the use of exogenous α-amylase and amyloglucoside to enhance starch digestion in the small intestine of horse. Anim Feed Sci Technol. 2004;114:295-305. doi.org/10.1016/j.anifeedsci.2003.09.004
  23. Brannon RM. Adaptation of exocrine pancreas to diet. Ann Rev Nutr. 1990;10:85-105. doi.org/10.1146/annurev.nu.10.070190.000505

  • Article View: 612
  • PDF Download: 751
  • LinkedIn
  • Twitter
  • Facebook
  • Google
  • Telegram
  • Home
  • Glossary
  • News
  • Aims and Scope
  • Privacy Policy
  • Sitemap

 

© 2022, College of Veterinary Medicine, University of Mosul

 
This journal is licensed under a Creative Commons Attribution 4.0 International (CC-BY 4.0)

Powered by eJournalPlus