College of Veterinary Medicine / University of Mosul
  • Register
  • Login
  • العربیة

Iraqi Journal of Veterinary Sciences

Notice

As part of Open Journals’ initiatives, we create website for scholarly open access journals. If you are responsible for this journal and would like to know more about how to use the editorial system, please visit our website at https://ejournalplus.com or
send us an email to info@ejournalplus.com

We will contact you soon

  1. Home
  2. Volume 34, Issue 1
  3. Author

Current Issue

By Issue

By Subject

Keyword Index

Author Index

Indexing Databases XML

About Journal

Aims and Scope

Editorial Board

Editorial Staff

Facts and Figures

Publication Ethics

Indexing and Abstracting

Related Links

FAQ

Peer Review Process

News

Bioremediation of lead and cadmium and the strive role of Pediococcus pentosaceus probiotic

    Raghad Jaafar

Iraqi Journal of Veterinary Sciences, 2020, Volume 34, Issue 1, Pages 51-57
10.33899/ijvs.2019.125581.1092

  • Show Article
  • References
  • Download
  • Cite
  • Statistics
  • Share

Abstract

Consumption of food and water contaminated with heavy metals poses a huge threat to the life. Both of Lead (Pb) and Cadmium (Cd) are heavy metals and important environmental pollutants. Away from traditional treatments, the current study aims to adopt probiotic bacteria Pediococcus pentosaceu to treat heavy metal pollution. Present results indicated a good probiotic property of P. pentosaceus, where they were able to survive pH range from 3-9, during incubation periods 3 and 24 hours, and bile salt range 0.15-0.5% for the same period. The number of bacteria in gastric (pH 3) and intestinal juices (pH 8) after 24 hours of incubation was 390 and 205, respectively. Bacteria showed an inhibitory effect against pathogenic bacteria Salmonella sp. The antibiotic susceptibility test revealed them resistant to clindamycin, intermediate resistant against benzylpenicillin, ampicillin, and their sensitivity to the rest tested antibiotics. Isolated bacteria identified based on their morphology, biochemical characteristic in addition to the use of automated instrument for bacterial identification (Vitek II), and depending on the results bacteria were identified as P. pentosaceus. In bioremediation study, the lowest inhibitory concentration of lead and cadmium and (MIC) was done, followed by assay the removal capacity by P. pentosaceus, using atomic absorption spectrometry (AAS) analysis. Bacteria show high MIC (1800 and 150 ppm) for Pb and Cd respectively. With removal efficiency for Pb 62.10-68.39% in the concentrations 25 and 50 ppm, respectively, and for Cd 52.71-11.25% in the same concentrations. Depending on the present finding probiotic bacteria (P. pentosaceus) can apply in the bioremediation of heavy metals in the fish ponds when contamination occurs, in addition to their tradition used as safety additive to prevent fish disease and an enhancement agent .Finally the isolation of these bacteria from fish ponds can be considered as a good indicator for a healthy state of fish ponds in the studied area.
Keywords:
    Probiotic properties Pollution Heavy metals MIC Biosorption
Main Subjects:
  • Animal Bacteria
  • PDF (713 K)
  • XML
(2020). Bioremediation of lead and cadmium and the strive role of Pediococcus pentosaceus probiotic. Iraqi Journal of Veterinary Sciences, 34(1), 51-57. doi: 10.33899/ijvs.2019.125581.1092
Raghad Jaafar. "Bioremediation of lead and cadmium and the strive role of Pediococcus pentosaceus probiotic". Iraqi Journal of Veterinary Sciences, 34, 1, 2020, 51-57. doi: 10.33899/ijvs.2019.125581.1092
(2020). 'Bioremediation of lead and cadmium and the strive role of Pediococcus pentosaceus probiotic', Iraqi Journal of Veterinary Sciences, 34(1), pp. 51-57. doi: 10.33899/ijvs.2019.125581.1092
Bioremediation of lead and cadmium and the strive role of Pediococcus pentosaceus probiotic. Iraqi Journal of Veterinary Sciences, 2020; 34(1): 51-57. doi: 10.33899/ijvs.2019.125581.1092
  • RIS
  • EndNote
  • BibTeX
  • APA
  • MLA
  • Harvard
  • Vancouver

  1. Agency for toxic substances and disease registry guidance for the preparation of a twenty first set toxicological profile. 2007. Available online: http://www.atsdr.cdc.gov/toxprofiles/guidance.pdf.
  2. Jaafar R, Al-Sulami A, Al-Taee A, Aldoghachi F, Suhaimi N, Mohammed S. Biosorption of some heavy metals by Deinococcus radiodurans isolated from soil in Basra governorate, Iraq. J Bioremediat Biodegrad.2016;7(2). doi: 10.4172/2155-6199.1000332.
  3. Fenchel T, Kofoed L. Evidence for exploitative interspecific competition in mud snails (Hydrobiidae). Oikos. 1976;27(3):367-376. doi:10.2307/3543455.
  4. Sugita H, Okano R, Suzuki Y, Iwai D, Mizukami M, Akiyama N, Matsuura S. Antibacterial abilities of intestinal bacteria from larval and juvenile Japanese flounder against fish pathogens. Fish Sci. 2002;68(5):1004-1011.doi.org/10.1046/j.1444-2906.
  5. Sugita H. Antibacterial abilities of intestinal bacteria from three coastal fishes. Aquacul Sci. 1998;46:563-568.
  6. Ayo-Olalusi CI. Isolation and identification of probiotics Pediococcus pentosaceus from the gut of tilapia guineensis for use in aquaculture production. Intern J Res Stud Microbiol Biotechnol. 2017;3(1):15-20. doi.org/10.20431/2454-9428.0301004.
  7. Halttunen T, Kankaanpa P, Tahvonen R, Salminen S, Ouwehand AC. Cadmium removal by lactic acid bacteria. Biosci Microflora. 2003;22(3):93-97. doi.org/10.12938/1996.2293.
  8. Elsanhoty RM, Al-Turki I, Ramadan MF. Application of lactic acid bacteria in removing heavy metals and aflatoxin B1 from contaminated water. Water Sci Technol. 2016;74(3):625-638.doi.org/10.2166/wst.2016.255.
  9. Allameh SK, Daud H, Yusoff FM, Saad CR, Ideris A. Isolation, identification and characterization of Leuconostoc mesenteroides as a new probiotic from intestine of snakehead fish (Channa striatus). Afr J Biotechnol. 2012;11(16):3810-3816.doi.org/10.5897/AJB11.1871.
  10. Salminen, S. (Ed.), von Wright, A. (Ed.).  Lactic Acid Bacteria. Boca Raton: CRC Press,2004.  doi.org/10.1201/9780824752033.
  11. .Rauta PR, Dhupal M, Nayak B. Screening and characterization of potential probiotic lactic acid bacteria isolated from vegetable waste and fish intestine. Int J Curr Microbiol App Sci. 2013;2:234-244.doi.org.10.1590/s1517-82832011000400039.
  12. Ghosh S, Ringo E, Selvam ADG, Rahiman KM, Sathyan N, John N, Hatha AM. Gut associated lactic acid bacteria isolated from the estuarine fish Mugil cephalus: Molecular diversity and antibacterial activities against pathogens. Inter J Aquac. 2014;4(1):1-11. doi.org/10.5376/ija.2014.04.0001.
  13.  De Man J, Rogosa D, Sharpe ME. A medium for the cultivation of lactobacilli.JApplBacteriol.1960;23(1):130-135doi.org/10.1111/j.1365-2672.1960.tb00188.
  14. Holt JG, Krieg N. Bergey's manual of systematic bacteriology. Baltimore: The Williams and Wilkins Co; 1984. 1-13 p.
  15. Samelis J, Maurogenakis F, Metaxopoulos J. Characterization   of lactic acid bacteria isolated from naturally fermented Greek dry salami. Int J Food Microbiol. 1994;23(2):179-196. doi.org/10.1016/0168-1605(94)90051-5
  16. Balcazar JL, Vendrell D, de Blas I, Ruiz I, Muzquiz JL,   Girones O. Characterization of probiotic properties of lactic acid bacteria isolated from intestinal microbiota of fish. Aquac. 2008;278(1-4):188-191. doi.org/10.1016/j.03.014.
  17. Charteris WP, Kelly PM, Morelli L, Collins JK. Selective detection, enumeration and identification of potentially probiotic Lactobacillus and Bifidobacterium species in mixed bacterial populations. Int J Food Microbiol.1997;35(1):1-27.doi.org/10.1016/S0168- 1605(96)01222-6.
  18. Etorki AM, El-Rais M, Mahabbis MT, Moussa NM. Removal of some heavy metals from wastewater by using of fava beans. Am J Analyt Chem. 2014;5(04):225. doi.org/10.4236/ajac/54028.
  19. Huet MAL, Puchooa D. Bioremediation of heavy metals from aquatic environment through microbial processes: A potential role for probiotics? J Appl Biol Biotechnol. 2017;5(6):14-23.doi.org/10.7324/JABB/.506033.
  20.  Menconi A, Kallapura G, Latorre JD, Morgan MJ, Pumford NR, Hargis BM, Tellez G. Identification and characterization of lactic acid bacteria in a commercial probiotic culture. Biosci Microbiol Food Health. 2014;33(1):25-30.doi.org/10.12938/bmfh.33.25
  21. Fontana L, Bermudez M, Plaza J, Munoz S, Gil A. Sources, isolation, characterization and evaluation of probiotics. Br J Nutr.2013;109(S2):S35-S50.  doi.org/10.1017/S0007114512004011.
  22.  Fernandez M, Boris S, Barbes C. Probiotic properties of human       lactobacilli strains to be used in the gastrointestinal tract. J Appl Microbiol.2003;94(3):449-55.doi.org/10.1046/j.1365- 2672.2003.01850.x.
  23. Davati N, Yazdi FT, Zibaee S, Shahidi F, Edalatian MR. Study of lactic acid bacteria community from raw milk of Iranian one humped camel and evaluation of their probiotic properties. Jundishapur J Microbiol. 2015;8(5):e16750.doi.org:105812/jjm 8(5)2015.16750.
  24. Cakir I. Determination of some probiotic properties on Lactobacilli and Bifidobacteria. Ankara Univrsity thesis of Ph.D.2003.
  25. Damayanti LI, Saragih JE, Purwoko T, Sardjono. Characterization of lactic acid bacteria as poultry probiotic candidates with aflatoxin B1 binding activities. Earth Environ Sci. 2017;12(3):1-9. doi.org/10.1088/1755-1315/101/1/012030.
  26.  Raghad S. Jaafar, Fadhil N. Al-knany, Bayan M. Mahdi and Asaad M.R. Al-Taee, Study the Probiotic Properties of Pediococcus pentosaceus Isolated from Fish Ponds in Basra City-South of Iraq, J Pure Appl Microbiol.,2019; 13(4): doi: 10.22207/JPAM.13.4.
  27. Sukumar G, Ghosh AR. Pediococcus spp. a potential probiotic isolated from Khadi (an Indian fermented food) and identified by 16S rDNA sequence analysis. Afr J Food Sci. 2010;4(9):597-602. doi.org/10.5897/AJFS2019.1826.
  28.  Shin M, Han S, Ji A, Kim K, Lee W. Isolation and characterization of bacteriocin‐producing bacteria from the gastrointestinal tract of broiler chickens for probiotic use. J Appl Microbiol. 2008;105(6):2203-2212. doi.org/10.1111/j.1365-2672.2008.03935.x.
  29.  Grimoud J, Durand H, Courtin C, Monsan P, Ouarne F, Theodorou V, Roques C. In vitro screening of probiotic lactic acid bacteria and prebiotic glucooligosaccharides to select effective symbiotic. Anaerobe. 2010;16(5):493-500. doi.org/10.1016/j.anaerobe.2010.07.005.
  30.  Tokatl M, Gulgor G, Bagder S, Arslankoz N, Ozcelik F. In vitro properties of potential probiotic indigenous lactic acid bacteria originating from traditional pickles. Biol Med Res Inter. 2015;31(5):1-8.doi.org/10.1155/2015/315819.
  31. Bartkiene VK, Antanaitis J, Kantautaite A, Kucinskas M,   Ruzauskas L, Vaskeviciute R, Siugzdiniene J, Kucinskiene J, Damasius G, Juodeikiene S. Antimicrobial activity of lactic acid bacteria multiplied in an alternative substrate and their influence on physiological parameters of new-born calves. Vet Med. 2016;61:653-662. doi.org/10.17221/192/2015-VETMED
  32. Dalia C, Grazina J, Algimantas P, Elena B. Antimicrobial activity of lactic acid bacteria against pathogenic and spoilage microorganism isolated from food and their control in wheat bread. Food Control2013;31:539-545. doi.org/10.1016/j.foodcont.2012.12.004.
  33. Klare I, Konstabel C, Werner G, Huys G, Vankerckhoven V, Kahlmeter G, Hildebrandt B, Muller S, Witte W, Goossens H. Antimicrobial susceptibilities of Lactobacillus, Pediococcus and Lactococcus human isolates and cultures intended for probiotic or nutritional use. J Antimicrob Chemother. 2007;59(5):900-912..doi.org/10.1093/jac/dkm035.                             
  34. Munoz E, Gomez B, Araujo C, Campanero C, del Campo R, Hernandez PE, Herranz C, Cintas LM. Antimicrobial activity, antibiotic susceptibility and virulence factors of lactic acid bacteria of aquatic origin intended for use as probiotics in aquaculture. BMC Microbiol. 2013;13(1):15.doi.org/10.1186/1471-2180-13-15.
  35. Yilmaz. E. Metal tolerance and biosorption capacity of Bacillus circulans strain EB1. Res Microbiol. 2003:409-415. doi.org/10.1016/S0923-2508(03)00116-5
  36. Bhakta JN, Ohnishi K, Munekage Y, Iwasaki K. Isolation and probiotic characterization of arsenic-resistant lactic acid bacteria for uptalking arsenic. Inter J Chem Biol Eng. 2010;3(4):167-74.
  37. Li B, Jin D, Yu S, Etareri S, Muhammad Z, Huo G, Liu F. In vitro and in vivo evaluation of Lactobacillus delbrueckii subsp. bulgaricus KLDS10207 for the alleviative effect on lead toxicity.Nutr.2017;9(8):845.doi.org/10.3390/nu9080845.
  38. Li J, Naidu R. Risk assessment of heavy metal contaminated soil in the vicinity of a lead/zinc mine. J Environ Sci. 2005;17(6):881-885.
  39. Teemu H, Seppo S, Jussi M, Raija T, Kalle L. Reversible surface binding of cadmium and lead by lactic acid and bifidobacteria. Inter. J. Food Microbiol.2008;125(2):170-175.doi.org/10.1016/j.ijfoodmicro.2008.03.041.

  • Article View: 1,364
  • PDF Download: 1,230
  • LinkedIn
  • Twitter
  • Facebook
  • Google
  • Telegram
  • Home
  • Glossary
  • News
  • Aims and Scope
  • Privacy Policy
  • Sitemap

 

© 2023, College of Veterinary Medicine, University of Mosul

 
This journal is licensed under a Creative Commons Attribution 4.0 International (CC-BY 4.0)

Powered by eJournalPlus