Evaluation of performance rate, some hematological and biochemical parameters in Iranian Afshari breed fattened sheep fed diet containing

Gundelia (Gundelia tournefortii L.)

A. Dehghani-Samani¹, S. Madreseh-Gahfarokhi² and A. Dehghani-Samani³*

¹ Faculty of Veterinary Medicine, Shahrekord University, Shahrekord, Iran
² Department of Clinical Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
³ Department of Clinical Sciences, Faculty of Veterinary Medicine, Shahrekord University, Shahrekord, Iran
* e-mail: amirds2008@gmail.com

(Received April 20, 2018; Accepted July 22, 2018)

Abstract

The effects of diets containing *Gundelia (Gundelia tournefortii L.)*, which is a wild plant species in middle east countries, on performance rate and health parameters of Iranian afshari breed sheep were studied for the first time. Totally 60 fattened sheep in three groups were studied via receiving different diets and performance rate, hematological and biochemical parameters, which are related to animals' health and also are indicator for diet's efficiency, for each group were evaluated via laboratory methods. The results of current study show that performance rate and/or hematological and biochemical parameters in group which received diet containing *Gundelia* hay and grain were same as control group which received standard diet, but performance rate in group which received *Gundelia* hay singly was lower than other groups. Number of white blood cells, differential number of neutrophils and lymphocytes, concentration of plasma proteins and fibrinogen, serum concentration of total protein, cholesterol and lipase had increases in treatment groups versus control group and number of red blood cells, serum concentration of glucose, albumin and blood urea nitrogen had decreases in treatment groups versus control group. Given to low costs and high-performance rate of *Gundelia* hay plus grain diet, which is related to presence of high amount of carbohydrates and fatty acids in it, this diet can be considered as an efficient diet for fattened sheep but more studies are need. Study on production's quality in animals are receiving *Gundelia* diet is suggested as a subject for next studies.

Keywords: *Gundelia tournefortii L.*, Hematologic parameters, Afshari breed, biochemical parameters, Performance rate

Available online at http://www.vetmedmosul.com

تحقيِم معدل الأداء، وبعض المعايير الدموية والكيميائية الحيوية في تسمين اغنام الاشتراء الايرانية

(∗Gundelia tournefortii L.*)

 rewarding - C.E.H.- و.دهقاني- ساماني

كلية الطب البيطري، جامعة شرکرد، شهرکرد، فرع العلوم السريرية، كلية الطب البيطري، جامعة شرکرد، شهرکرد، ایران

الخلاصة

تم في هذا البحث دراسة آثار النظام الغذائي الذي يحتوي على (∗Gundelia tournefortii L.∗)، وهو نوع من أنواع النباتات البرية في بلدان الشرق الأوسط، على معدل الأداء والمعايير الصحية لاغنام الأفشاري من أصل أفرزري لأول مرة. تمت هذه الدراسة باستخدام 30 رأس من الأغنام المنفصلة للتصميمين حيث قسمت إلى ثلاث مجموعات من خلال تلتئم أنظمة غذائية مختلفة ومعدلات أداء التغييرات الدموية وبيوكيميائية، والتي ترتبط بصورة انسجام وأيضاً مؤشر كفاءة النظام الغذائي، تم دراستها من خلال طرق مختبرية. أظهرت نتائج الدراسة الحالية أن معدل الأداء و/أو المعايير البدنية والكيميائية الحيوية في المجموعة التي تلتئم نظاماً غذائياً يحتوي على قشور
Introduction

Sheep meat is an important part of family’s food schedule in some parts of the world including Iran, so fattened sheep breeders are always trying to find the best breed, which is adapted with their climate and has the highest performance. Iranian Afshari sheep breed is a heavy meat-breed, which has high potentials of growth and reproduction and is adapted to Iran's climate. The average of first lambing age, lambing interval and length of mating season are 691.45±15.45, 306.24±10.16 and 67.06±0.235 days, respectively, the litter size is 1.149±0.031 lambs for a year (1). The averages of birth weight, weaning weight and body weight at 6th month of the ages for the lambs of this breed are 3.26±0.072, 22.02±0.410 and 31.94±0.629 kg, respectively. Also, the average daily gain from birth to weaning and weaning to 6th month of the ages are 184.04±5.02 and 156.84±11.81 gram, respectively (2).

Affordability, availability, efficiency and health security are the most important factors for animals feed sources, which in order to decreasing of costs breeders including fattened sheep breeders, are always seeking for a good diet with the lowest cost for their herds. In this way they are traditionally using from natural resources, which are available and/or free in their location. Gundelia (Gundelia tournefortii L.), which has been identified as one of the well-known and widely distributed plants with various applications in some of Asian and North African countries, belongs to the Asteraceae family and grows in the Middle East particularly in the temperate, mountainous and semi desert areas of countries such as Iran, Iraq, Turkey, Jordan, Syria, Egypt, Turkmenistan and some regions of Azerbaijan and Armenia. This plant is typically known as kangar, tumblerweed, kaoub and kanger in Persian, English, Arabic and Turkish languages, respectively (3).

All parts of this plant are widely used; the young and still undeveloped areal parts, especially flower buds, are sold in the local fairs, the leaves and stems of this plant are used as food ingredients in soups and salads (4,5). Its fruits are treated with vinegar or lemon and salt and used as a garnish (6). The stem of Gundelia tournefortii L. is used in various parts of Iran as an occasional food with different usages and as a traditional therapy (7,8). In folk medicine, Gundelia tournefortii L. has advantages in the treatment of diseases like bronchitis, vitiligo, chest pain, heart stroke, diabetes, splenomegaly (7-13).

Different parts of this plant after drying and grinding can be used as a complete/partial diet for animals in different regions of the above-mentioned countries, but to the best of authors knowledge and current time effect of diets containing different amounts of Gundelia on performance rate and health status of animals is unidentified. Therefore, the effect of diet containing different amounts of Gundelia tournefortii L. on performance rate, physiological and biochemical parameters in Iranian Afshari breed fattened sheep was studied.

Materials and methods

Location of study and plant parts

The current study was conducted in Saman City (32°27'06"N 50°54'38"E) located in Chaharmahal Va Bakhtiari Province in southwest of Iran. Aerial parts, viz. leaves, stems, flowers and seeds, of Gundelia tournefortii L. plants were collected (from a same field located around the Saman city), dried under sun light, ground immediately and then stored until use in experiments.

Animals and farm condition

Totally 60 Iranian Afshari breed sheep with the approximately same age (180±15 days), weight (25±5 kg) and sex (male) were studied. Animals were obtained from a same herd and before the experiment they were fed common hays like alfalfa and clover. During the experiment feeding of animals was free and they had free access to water and diet, 24 hours, daily. Temperature (18-25°C), surface area (approximately 20 m² for each treatment), light (natural daily sun light plus 4-5 hours artificial light and totally about 15 hours daily), humidity (45-55%), and other environmental factors were the same for groups during the experiment.

Different treatments and performance rate

In order to assure animal's health, in first step and before the experiment, clinical examinations for all animals were carefully done. Animals were equally divided into three groups containing 20 sheep in each group. During the
common specific laboratory methods for metabolic parameters of sera including albumin, Blood Urea Nitrogen (BUN), cholesterol, creatinine, glucose, lipase, protein (total), calcium, magnesium, phosphorus, sodium, potassium and Chlorine were also measured via automatic cell counter. Important measurable biochemical plasma proteins and fibrinogen were measured via and potassium and Chlorine were also measured via automatic cell counter. Important measurable biochemical plasma proteins and fibrinogen were measured via (increasing or decreasing) but their changes were unreliable. Other hematologic parameters had different amount of changes (increasing or decreasing) but their changes were unreliable.

Biochemical parameters

Table 3 shows that serum concentration of glucose, albumin and blood urea nitrogen had a decrease in treatment groups versus control group, not only this decrease was significant (P≤0.05) in the treatment 2 animals, but also the decrease in serum concentration of glucose and albumin was obviously over of reference values. Serum concentration of total protein, cholesterol and lipase had an increase in treatment groups versus control group, but this increase was significant (P≤0.05) only in the treatment 2, and the
increase in serum concentration of total protein in treatment 2 animals was over of reference values. Other biochemical parameters had different amount of changes (increasing or decreasing) but their changes were unreliable.

Table 1: Percentage of weights increases (mean ± SEM) in different examined groups versus time

<table>
<thead>
<tr>
<th>Groups</th>
<th>First week</th>
<th>Second week</th>
<th>Third week</th>
<th>Fourth week</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatment 1: (Grain+Gundelia/Alfalfa Hay)</td>
<td>4.09±0.65<sup>A,a</sup></td>
<td>7.99±0.71<sup>A,b</sup></td>
<td>11.52±0.39<sup>A,c</sup></td>
<td>16.13±0.52<sup>A,d</sup></td>
</tr>
<tr>
<td>Treatment 2: (Grain+Gundelia Hay)</td>
<td>3.97±0.54<sup>A,a</sup></td>
<td>6.15±0.89<sup>B,b</sup></td>
<td>6.64±1.03<sup>B,b</sup></td>
<td>7.06±1.21<sup>B,b</sup></td>
</tr>
<tr>
<td>Control group: (Grain+Alfalfa Hay)</td>
<td>4.26±0.71<sup>A,a</sup></td>
<td>8.13±0.58<sup>A,a</sup></td>
<td>11.83±0.72<sup>A,c</sup></td>
<td>16.47±0.46<sup>A,d</sup></td>
</tr>
</tbody>
</table>

Presence of different superscript uppercase letter (^{A-C}) shows significant differences (P≤0.05) between different treatment groups (rows) in every column (time), and presence of different superscript lowercase letters (^{a-d}) shows significant differences (P≤0.05) between different times (column) in every row (treatment groups).

Table 2: Hematologic parameters and their reference values according to Oregon State University (2018a)

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Initial measurement</th>
<th>Treatment 1 (Grain+Gundelia Hay)</th>
<th>Treatment 2 (Gundelia Hay)</th>
<th>Control Group (Grain+Alfalfa Hay)</th>
<th>Reference Value*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hematocrit (n%)</td>
<td>35.52±2.16<sup>*</sup></td>
<td>35.76±1.61<sup>*</sup></td>
<td>34.99±2.08<sup>*</sup></td>
<td>34.41±0.85<sup>*</sup></td>
<td>27-45</td>
</tr>
<tr>
<td>RBC (n×10<sup>6</sup>/ul)</td>
<td>10.97±2.21<sup>*</sup></td>
<td>9.83±2.37<sup>*</sup></td>
<td>9.58±3.13<sup>*</sup></td>
<td>10.24±1.07<sup>*</sup></td>
<td>9-15</td>
</tr>
<tr>
<td>WBC (n/ul)</td>
<td>8369.73±90.95<sup>*</sup></td>
<td>9131.81±173.23<sup>*</sup></td>
<td>12532.74±257.06<sup>*</sup></td>
<td>8447.36±320.93<sup>*</sup></td>
<td>4000-12000</td>
</tr>
<tr>
<td>Neutrophils (n/ul)</td>
<td>4673.19±113.69<sup>*</sup></td>
<td>5787.19±203.37<sup>*</sup></td>
<td>8903.26±398.21<sup>*</sup></td>
<td>4751.19±285.65<sup>*</sup></td>
<td>2000-9000</td>
</tr>
<tr>
<td>Lymphocytes (n/ul)</td>
<td>3874.97±314.14<sup>*</sup></td>
<td>4111.07±185.91<sup>*</sup></td>
<td>5341.83±129.46<sup>*</sup></td>
<td>3963.22±211.39<sup>*</sup></td>
<td>2000-9000</td>
</tr>
<tr>
<td>Monocytes (n/ul)</td>
<td>150.27±56.23<sup>*</sup></td>
<td>164.53±77.16<sup>*</sup></td>
<td>172.03±51.21<sup>*</sup></td>
<td>159.27±49.14<sup>*</sup></td>
<td>0-750</td>
</tr>
<tr>
<td>Eosinophils (n/ul)</td>
<td>287.39±63.85<sup>*</sup></td>
<td>313.56±42.37<sup>*</sup></td>
<td>295.93±66.09<sup>*</sup></td>
<td>308.02±73.26<sup>*</sup></td>
<td>0-1000</td>
</tr>
<tr>
<td>Basophils (n/ul)</td>
<td>81.08±13.37<sup>*</sup></td>
<td>99.34±27.03<sup>*</sup></td>
<td>89.37±67.28<sup>*</sup></td>
<td>93.25±39.89<sup>*</sup></td>
<td>0-300</td>
</tr>
<tr>
<td>Plasma protein (g/dl)</td>
<td>6.56±1.05<sup>*</sup></td>
<td>7.41±1.87<sup>*</sup></td>
<td>9.12±2.57<sup>*</sup></td>
<td>6.91±0.72<sup>*</sup></td>
<td>6.0-7.5</td>
</tr>
<tr>
<td>Plasma fibrinogen (mg/dl)</td>
<td>356.44±31.27<sup>*</sup></td>
<td>404.27±50.35<sup>*</sup></td>
<td>503.57±89.61<sup>*</sup></td>
<td>388.51±10.18<sup>*</sup></td>
<td>100-500</td>
</tr>
</tbody>
</table>

Presence of different characters (*, £) shows significant differences (P≤0.05) between groups in every row.

Table 3: Biochemical parameters and their reference values according to Oregon State University (2018)

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Initial measurement</th>
<th>Treatment 1 (Grain+Gundelia Hay)</th>
<th>Treatment 2 (Gundelia Hay)</th>
<th>Control Group (Grain+Alfalfa Hay)</th>
<th>Reference Value*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Albumin (g/dl)</td>
<td>3.29±1.42<sup>*</sup></td>
<td>3.18±1.13<sup>*</sup></td>
<td>2.46±1.71<sup>*</sup></td>
<td>3.51±0.81<sup>*</sup></td>
<td>2.5-3.9</td>
</tr>
<tr>
<td>BUN (mg/dl)</td>
<td>26.32±2.16<sup>*</sup></td>
<td>29.23±2.34<sup>*</sup></td>
<td>19.14±5.03<sup>*</sup></td>
<td>31.14±4.25<sup>*</sup></td>
<td>10-35</td>
</tr>
<tr>
<td>Cholesterol (mg/dl)</td>
<td>40.18±1.93<sup>*</sup></td>
<td>44.37±2.57<sup>*</sup></td>
<td>53.45±4.19<sup>*</sup></td>
<td>42.79±3.08<sup>*</sup></td>
<td>40-76</td>
</tr>
<tr>
<td>Creatinine (mg/dl)</td>
<td>1.49±0.69<sup>*</sup></td>
<td>1.72±0.65<sup>*</sup></td>
<td>1.37±0.22<sup>*</sup></td>
<td>1.61±0.39<sup>*</sup></td>
<td>0-2.0</td>
</tr>
<tr>
<td>Glucose (mg/dl)</td>
<td>59.38±10.34<sup>*</sup></td>
<td>67.89±9.01<sup>*</sup></td>
<td>48.89±8.76<sup>*</sup></td>
<td>70.89±9.34<sup>*</sup></td>
<td>50-85</td>
</tr>
<tr>
<td>Lipase (IU/L)</td>
<td>25.25±3.82<sup>*</sup></td>
<td>29.83±4.08<sup>*</sup></td>
<td>36.29±5.47<sup>*</sup></td>
<td>27.31±2.55<sup>*</sup></td>
<td>1-71</td>
</tr>
<tr>
<td>Total Protein (g/dl)</td>
<td>6.56±0.68<sup>*</sup></td>
<td>7.45±2.29<sup>*</sup></td>
<td>8.21±2.73<sup>*</sup></td>
<td>6.93±1.07<sup>*</sup></td>
<td>5.5-7.5</td>
</tr>
<tr>
<td>Calcium (mg/dl)</td>
<td>9.94±1.27<sup>*</sup></td>
<td>10.13±3.01<sup>*</sup></td>
<td>9.38±3.25<sup>*</sup></td>
<td>10.77±2.17<sup>*</sup></td>
<td>8.5-12</td>
</tr>
<tr>
<td>Magnesium (mg/dl)</td>
<td>2.45±0.61<sup>*</sup></td>
<td>2.63±0.22<sup>*</sup></td>
<td>2.29±0.83<sup>*</sup></td>
<td>2.73±0.43<sup>*</sup></td>
<td>2.2-2.8</td>
</tr>
<tr>
<td>Phosphorus (mg/dl)</td>
<td>5.37±0.83<sup>*</sup></td>
<td>5.99±0.43<sup>*</sup></td>
<td>6.82±1.18<sup>*</sup></td>
<td>6.07±0.39<sup>*</sup></td>
<td>5.0-7.5</td>
</tr>
<tr>
<td>Sodium (mEq/L)</td>
<td>152.43±2.95<sup>*</sup></td>
<td>150.28±4.19<sup>*</sup></td>
<td>147.53±2.27<sup>*</sup></td>
<td>153.69±3.51<sup>*</sup></td>
<td>145-155</td>
</tr>
<tr>
<td>Potassium (mEq/L)</td>
<td>4.71±0.28<sup>*</sup></td>
<td>5.32±0.56<sup>*</sup></td>
<td>4.81±0.33<sup>*</sup></td>
<td>5.24±0.73<sup>*</sup></td>
<td>4.5-6</td>
</tr>
<tr>
<td>Chlorine (mEq/L)</td>
<td>101.97±3.43<sup>*</sup></td>
<td>102.63±3.57<sup>*</sup></td>
<td>99.16±2.78<sup>*</sup></td>
<td>105.35±4.13<sup>*</sup></td>
<td>95-112</td>
</tr>
</tbody>
</table>

Presence of different characters (*, £) shows significant differences (P≤0.05) between groups in every row.

Discussion

It is possible to judge about efficacy of diets according to the parameters of metabolism in the animal's body. In other words, when a diet is efficient then all of the parameters of metabolisms are in the range of normal values, otherwise diet is not efficient and perfect. The biochemical mechanisms, which the chemical energy
Blood urea nitrogen (BUN) shows the amount of urea nitrogen found in blood. The liver produces urea in the urea cycle as a waste product of the digestion of protein. BUN concentration may be useful indicator of protein status within a group of animals, and could help to fine-tune diets or identify problems with a feeding program (23, 24). The result of this study shows that BUN had a decrease in groups that were fed Gundelia. It is identified that the level of proteins in this plant is low (13), so production of urea as a waste metabolite of protein's digestion will be lesser due to diets containing it singly, but this lower amount of proteins can be solved by combination of Gundelia with other sources having higher amount of proteins like grains and alfalfa hay.

White blood cells or leukocytes are important part of the immune system and are involved in protection of body. Their numbers will be increased due to any infectious diseases (25). The results of the present study show that total number of White Blood Cells (WBC), differential number of neutrophils and differential number of lymphocytes had an increasing in groups fed diet containing Gundelia. It was unidentified since all the animals were health and without any signs of diseases, so astute clinical examinations were done; oral lesions due to insertion of plant's acicula were reason. These lesions were lesser in group fed by diet containing oat grain and Gundelia, so in this group the increase of the above-mentioned parameters was not significant. Also, fibrinogen is a glycoprotein that in animals circulates in the blood. During tissue and vascular injury, it is converted enzymatically by thrombin to fibrin and subsequently to a fibrin-based blood clot. Fibrinogen functions primarily to occlude blood vessels and thereby stop excessive bleeding. However, fibrinogen's product (fibrin) binds and reduces the activity of thrombin. Fibrinogen production is stimulated due to any damage which can make bleeding in the body (26,27). In the current study increase in concentration of plasma fibrinogen was a subsequent result of inflammation reactions due to oral lesions and parallel increases in both of plasma and serum protein concentration, at the same time with increase in fibrinogen concentration in plasma and decreasing of albumin concentration in serum, indicate that they were obviously as subsequent results of inflammation reactions due to oral lesions. In order to reduce these predictable lesions, it is traditionally suggested to moisten hay before use.

In conclusion, the current study as the first one shows the effects of diets containing Gundelia tournefortii L. on performance rate and health status of animals. Performance rate of treatment 2, which was fed Gundelia hay singly, was lower than other groups and performance rates of combined diets of grain and Gundelia and diet of grain and alfalfa hay were similar and also efficient. The total number of White Blood Cells (WBC), differential number of neutrophils and lymphocytes, concentration of plasma proteins, concentration of plasma fibrinogen and serum...
concentration of total protein, cholesterol and lipase had increases in treatment groups, which were fed Gundelia, but serum concentration of glucose, albumin and Blood Urea Nitrogen (BUN) had a decrease in in these groups versus control group. Briefly, given to low costs and high-performance rate, which may be related to presence of high amount of fatty acids in diet containing Gundelia and grains, this diet can be considered as a good source of food in fattened sheep, but Gundelia-based diet, which has it singly, is not efficient in fattened sheep. Study on meat quality, like meat's fat level, in animals due to receiving of diet containing Gundelia is suggested as a subject for the next studies.

Conflict of interest

Authors certify there are no financial and personal relationships with other people or organizations which can influence or bias their work and declare that there is no any conflict of interest.

Acknowledgments

Authors are grateful to Dr. Azam Dehghani-Samani (Financial support of study), Mr. Ayat Dehghani-Samani (Owner of farm and animals) and all of the persons who helped them to do this research.

References

14. Smith MH. Sheep Nutrition, What You Need to Know. ANR Publication 8476, University of California, California, USA; 2014.
16. Oregon State University: Hematology Reference Interval [Internet]. Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Oregon State University, Corvallis, Oregon, USA; 2018.
17. Oregon State University: Biochemistry Reference Interval [Internet]. Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Oregon State University, Corvallis, Oregon, USA; 2018.